Table

Overview of the Results of the Scoping Review

No.	Publication	Title	(Visual) attention aspects	Cognitive / mental workload aspects	Other cognitive concepts	Sample sizes with gender distribution	Setting / Task	Professional background
1	Akhmetov and Varol (2023)	An augmented reality-based warning system for enhanced safety in industrial settings	attention: gaze points with AI-based object recognition			experiment 1: $N = 9$ (f = 2; m = 7)	manufacturing	university students / faculty members
						experiment 2: $N = 30$		
		C				(f = 15; m = 15)		
2	Al-Haddad et al. (2022)	Complexity, performance, and search efficiency: an eye-tracking study on assembly-based tasks among construction workers (pipefitters).			search efficiency: convex hulls (based on fixations)	<i>N</i> = 20	assembly	workers
3	An et al. (2024)	Skill learning in robot- assisted micro- manipulation through human demonstrations with attention guidance	(visual) attention: fixation points and durations; heat maps; gaze trajectory	cognitive load : index of pupillary activity (IPA)		<i>N</i> = 10	assembly (with joystick)	experts and novices
4	Bales et al. (2017)	Digitalization of human operations in the age of cyber manufacturing: sensorimotor analysis of manual grinding performance	visual attention: pooled fixation; duration and variance of fixations; distributed fixation frequency and gaze variation; relation between eye movements, tool velocity and grinding force			<i>N</i> = 4	manufacturing (grinding)	students
5	Biondi et al. (2023)	On the potential of pupil size as a metric of physical fatigue during a repeated handle push/pull task		cognitive load (interaction with physical fatigue): pupil size; blink rate		N = 24 (f = 11; m = 13)	manufacturing (push/pull task)	university students
6	Biondi, Saberi et al. (2023)	Distracted worker: Using pupil size and blink rate to detect cognitive load during manufacturing tasks		cognitive load : pupil size; blink rate		<i>N</i> = 24 (f = 11; m = 13)	manufacturing (push/pull task)	university students

No.	Publication	Title	(Visual) attention aspects	Cognitive / mental workload aspects	Other cognitive concepts	Sample sizes with gender distribution	Setting / Task	Professional background
7	Bläsing and Bornewass er (2021)	Influence of increasing task complexity and use of informational assistance systems on mental workload		mental workload: pupillary response; fixation duration; saccadic peak velocity; area of interest (AOI) analysis		N = 65 (f = 39; m= different numbers to whole sample size (n = 27))	assembly	
8	Capponi et al. (2024)	Assembly complexity and physiological response in human-robot collaboration: Insights from a preliminary experimental analysis		cognitive load : pupil size; fixation number and duration; saccade number, duration, peak velocity and amplitude		<i>N</i> = 18	assembly (with a cobot)	students
9	Drouot et al. (2022)	Augmented reality on industrial assembly line: Impact on effectiveness and mental workload		mental workload : pupil size; blink rate and duration		N = 27 (f = 5; m = 22)	assembly	employees from different levels
10	Gelec and Lindenlaub (2024)	Eye-Tracking supported design of digital assistance systems for smart factories	visual attention: average fixation duration, AOI analysis; visualization: heatmaps and gaze plots	cognitive load : pupil diameter/dilation			manual inspection process (manufacturing)	
11	Gervasi et al. (2024a)	Does size matter? Exploring the effect of cobot size on user experience in human- robot collaboration		cognitive load : saccade amplitude, peak velocity of saccades	learning effect and level of user engagement: pupil diameter	<i>N</i> = 32 (f = 27,6%; m = 72,7%)	assembly (with a cobot)	recruited from institute and surroundings
12	Gervasi et al. (2024b)	Eye-tracking support for analyzing human factors in human-robot collaboration during repetitive long- duration assembly processes		cognitive/mental (work)load : average pupil diameter, number and average duration of fixations, number of saccades		N = 6 (f = 3; m = 3); only eye-tracking data of 4 was used	assembly (with a cobot)	
13	Grandi et al. (2020)	A Transdisciplinary digital approach for tractor's human-centred design		mental workload : pupil diameter			manufacturing/ assembly/ disassembly	
14	Hock and Metternich (2024)	Using metrics for the assessment of human interaction with worker assistance systems			information perception : dwell count; AOI analysis: fixation durations and revisits		assembly/ production	no information

No.	Publication	Title	(Visual) attention aspects	Cognitive / mental workload aspects	Other cognitive concepts	Sample sizes with gender distribution	Setting / Task	Professional background
15	Hopko et al. (2024)	Brain-behavior relationships of trust in shared space human-robot collaboration			trust and bottom-up processing: AOIs, stationary gaze entropy (based on fixations) and gaze transition entropy	<i>N</i> = 38	assembly (with a cobot)	university population
						(m = 18; f = 20)		
						(n = 32 for eye-tracking data)		
16	Liu et al.	The effects of type and form	attentional mental effort: fixation	mental effort: fixation		N = 40	manufacturing (pick	mainly university students
	(2024)	of collaborative robots in manufacturing on trustworthiness, risk perceived, and acceptance	resources: fixation counts and durations	counts and durations		(f = 20; m = 20)	and place with a cobot)	
17	Lucas and	Multirobot confidence and	attention: fixations			<i>N</i> = 12	robot control	
	Pandya (2021)	behavior modeling: An evaluation of semiautonomous task performance and efficiency				(f = 3; m = 9)		
18	Lystbæk et al.	Spatial gaze markers:	attention shift		visual search:	N=20	assembly/repair/	mainly university students
	(2024)	Supporting effective task switching in augmented reality	detection: fixations, AOIs (not directly mentioned)		fixations	(f = 6; m = 13; other = 1)	inspection	
19	Ma et al.	Determining cognitive		cognitive workload:		<i>N</i> = 25	assembly/	
	(2024)	workload using physiological measurements: pupillometry and heart-rate variability		pupil diameter		(f = 9; m = 16)	manufacturing	
20	Mingardi et	Assessment of implicit and		mental workload: pupil		<i>N</i> = 30	assembly/	mainly young
	al. (2020)	explicit measures of mental workload in working situations: Implications for industry 4.0		diameter, blink duration and frequency, fixation duration and frequency, saccade duration and frequency and nearest neighbor index (NNU)		(f = 16)	manufacturing	adults

No.	Publication	Title	(Visual) attention aspects	Cognitive / mental workload aspects	Other cognitive concepts	Sample sizes with gender distribution	Setting / Task	Professional background
21	Morgenstern et al. (2024)	Towards a cognition-based framework describing interdisciplinary expert team processes for cognitive robotics in industry 5.0 technologies	(visual) attention: fixations		situational awareness: fixation proportions (summed fixation durations) and AOIs	N = 3 (f = 1; m = 2)	manufacturing (process) (with a robot)	employees of a Fraunhofer Institute
22	Nandakumar et al. (2014)	Real time assessment of stress level of workers in factories by measuring their eye parameters		cognitive workload : pupil diameter		<i>N</i> = 45	manufacturing	workers
23	Ozkan and	Use of an eye-tracker to	attentional aspects of			N = 2	inspection/	workers
	(2016)	assess workers in ceramic tile surface defect detection	performance: time to first fixation, total and average fixation duration, (average) fixation count, total and average visit duration, visit count			(f = 2)	classification (manufacturing)	
24	Paletta et al. (2019)	Gaze-based human factors measurements for the evaluation of intuitive human-robot collaboration in real-time.	attention: areas of		concentration : fixation rate on the areas of interaction	<i>N</i> = 20	manufacturing (pick and place with a cobot)	university students
			interaction			(f = 8; m = 12)		
25	Pluchino et al.	Advanced workstations and		mental load: blink		N = 15 (f = 4)	assembly (with a	workers
	(2023)	collaborative robots: exploiting eye-tracking and cardiac activity indices to unveil senior workers' mental workload in assembly tasks		duration and frequency, fixation duration and frequency		n = 11 analyzed	cobot)	
26	Sears et al. (2018)	Visualizing eye tracking convex hull areas: A pilot study for understanding how craft workers interpret 2d construction drawings			amount of information processing: average convex hulls (based on fixations)	<i>N</i> = 20	assembly	workers

No.	Publication	Title	(Visual) attention aspects	Cognitive / mental workload aspects	Other cognitive concepts	Sample sizes with gender distribution	Setting / Task	Professional background
27	Sears et al. (2022)	How pipefitters obtain visual information from construction assembly drawings			visual information gathering strategies: visit count and duration (based on fixations in certain AOIs)	N = 20	assembly	workers
28	Seeliger et al.	Exploring the effect of visual	visual attention: time			<i>N</i> = 12	assembly (with AR	
	(2021)	AR-guided picking and assembly tasks	number of fixations, AOIs, dwell duration, inter-POR distance of scanpath, angular distance			(f = 6; m = 6)	cuesy	
29	Sonntag and Bodensiek (2022)	How mixed reality shifts visual attention and success in experimental problem solving	visual attention: gaze rate in the AOIs; heat maps			<i>N</i> = 45	assembly/ building	university students
30	Ulutas et al. (2020)	Application of hidden Markov models to eye tracking data analysis of visual quality inspection operations	visual attention: time to first fixation, fixation count and total fixation duration, average visit duration, heat maps for visualization			<i>N</i> = 2 (f = 2)	manufacturing/ inspection	workers
31	Van Acker et	Mobile pupillometry in		cognitive load: pupil size		N = 21	assembly	university
	al. (2020)	manual assembly: A pilot study exploring the				(f = 33%)		students
		wearability and external validity of a renowned mental workload lab measure				n = 19 analyzed		
32	Zanardi et al.	Pupil responses as indicators		cognitive load: average	learning: average	<i>N</i> = 17	assembly (with a	university
	(2024)	of learning and adaptation in human-robot collaboration scenarios		pupil diameter	pupil diameter	(f = 9; m = 8); 2 removed	cobot)	students

References

- Akhmetov, T., & Varol, H. A. (2023). An augmented reality-based warning system for enhanced safety in industrial settings. *IEEE Transactions on Industrial Informatics*, 19(7), 7966–7977. https://doi.org/10.1109/TII.2022.3216009
- Al-Haddad, S., Sears, M., Alruwaythi, O., & Goodrum, P. M. (2022). Complexity, performance, and search efficiency: an eye-tracking study on assembly-based tasks among construction workers (pipefitters). *Buildings*, *12*(12), 2174. <u>https://doi.org/10.3390/buildings12122174</u>
- An, Y., Yang, J., Li, J., He, B., Guo, Y., & Yang, G.-Z. (2024). Skill learning in robot-assisted micro-manipulation through human demonstrations with attention guidance. 2024 IEEE International Conference on Robotics and Automation (ICRA), 15601–15607.
 https://doi.org/10.1109/ICRA57147.2024.10610945
- Bales, G. L., Das, J., Tsugawa, J., Linke, B., & Kong, Z. (2017). Digitalization of human operations in the age of cyber manufacturing: sensorimotor analysis of manual grinding performance. *Journal of Manufacturing Science and Engineering*, *139*(10), 101011.
 https://doi.org/10.1115/1.4037615
- Biondi, F. N., Graf, F., & Cort, J. (2023). On the potential of pupil size as a metric of physical fatigue during a repeated handle push/pull task. *Applied Ergonomics*, 110, 104025. <u>https://doi.org/10.1016/j.apergo.2023.104025</u>
- Biondi, F. N., Saberi, B., Graf, F., Cort, J., Pillai, P., & Balasingam, B. (2023). Distracted worker: Using pupil size and blink rate to detect cognitive load during manufacturing tasks. *Applied Ergonomics*, 106, 103867. <u>https://doi.org/10.1016/j.apergo.2022.103867</u>
- Bläsing, D., & Bornewasser, M. (2021). Influence of increasing task complexity and use of informational assistance systems on mental workload. *Brain Sciences*, 11(1), 102. <u>https://doi.org/10.3390/brainsci11010102</u>

- Capponi, M., Gervasi, R., Mastrogiacomo, L., & Franceschini, F. (2024). Assembly complexity and physiological response in human-robot collaboration: Insights from a preliminary experimental analysis. *Robotics and Computer-Integrated Manufacturing*, *89*, 102789. <u>https://doi.org/10.1016/j.rcim.2024.102789</u>
- Drouot, M., Le Bigot, N., Bricard, E., de Bougrenet, J.-L., & Nourrit, V. (2022). Augmented reality on industrial assembly line: Impact on effectiveness and mental workload. *Applied Ergonomics*, 103, 103793. <u>https://doi.org/10.1016/j.apergo.2022.103793</u>
- Gelec, E., & Lindenlaub, S. (2024). Eye-Tracking supported design of digital assistance systems for smart factories. *Procedia CIRP*, 128, 49–54. <u>https://doi.org/10.1016/j.procir.2024.07.046</u>
- Gervasi, R., Capponi, M., Mastrogiacomo, L., & Franceschini, F. (2024a). Does size matter? Exploring the effect of cobot size on user experience in human–robot collaboration. The *International Journal of Advanced Manufacturing Technology*, *133*, 5777–5791. <u>https://doi.org/10.1007/s00170-024-14060-2</u>
- Gervasi, R., Capponi, M., Mastrogiacomo, L., & Franceschini, F. (2024b). Eye-tracking support for analyzing human factors in human-robot collaboration during repetitive long-duration assembly processes. *Production Engineering*. https://doi.org/10.1007/s11740-024-01294-y
- Grandi, F., Zanni, L., Peruzzini, M., Pellicciari, M., & Campanella, C. E. (2020). A transdisciplinary digital approach for tractor's human-centred design. *International Journal of Computer Integrated Manufacturing*, *33*(4), 377–397. https://doi.org/10.1080/0951192X.2019.1599441
- Hock, F., & Metternich, J. (2024). Using metrics for the assessment of human interaction with worker assistance systems. In Proceedings of the Conference on Production Systems and Logistics: CPSL 2024 (pp. 687-696). Hannover: publish-Ing.

https://doi.org/10.15488/17757

- Hopko, S. K., Zhang, Y., Yadav, A., Pagilla, P. R., & Mehta, R. K. (2024). Brain–behavior relationships of trust in shared space human–robot collaboration. *Journal of Human-Robot Interaction*, 13(1), Article 5. <u>https://doi.org/10.1145/3632149</u>
- Liu, L., Zou, Z., & Greene, R. L. (2024). The effects of type and form of collaborative robots in manufacturing on trustworthiness, risk perceived, and acceptance. *International Journal of Human-Computer Interaction*, 40(10), 2697–2710.

https://doi.org/10.1080/10447318.2023.2169527

- Lucas, N., & Pandya, A. (2021). Multirobot confidence and behavior modeling: An evaluation of semiautonomous task performance and efficiency. *Robotics*, 10(2), 71. <u>https://doi.org/10.3390/robotics10020071</u>
- Lystbæk, M. N., Pfeuffer, K., Langlotz, T., Grønbæk, J. E. S., & Gellersen, H. (2024). Spatial gaze markers: supporting effective task switching in augmented reality. *Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems*, Article 633.
 Association for Computing Machinery. <u>https://doi.org/10.1145/3613904.3642811</u>
- Ma, X., Monfared, R., Grant, R., & Goh, Y. M. (2024). Determining cognitive workload using physiological measurements: pupillometry and heart-rate variability. *Sensors*, 24(6), 2010. https://doi.org/10.3390/s24062010
- Mingardi, M., Pluchino, P., Bacchin, D., Rossato, C., & Gamberini, L. (2020). Assessment of implicit and explicit measures of mental workload in working situations: implications for industry 4.0. *Applied Sciences*, 10(18), 6416. <u>https://doi.org/10.3390/APP10186416</u>
- Morgenstern, T., Klichowicz, A., Bengler, P., Todtermuschke, M., & Bocklisch, F. (2024).
 Towards a cognition-based framework describing interdisciplinary expert team processes for cognitive robotics in industry 5.0 technologies. *Applied Sciences*, *14*(10), 4121. <u>https://doi.org/10.3390/app14104121</u>

- Nandakumar, N., Arularasu, M., & Sivaprakash, P. (2014). Real time assessment of stress level of workers in factories by measuring their eye parameters. *International Journal of Applied Engineering Research*, 9(23), 21449–21457.
- Ozkan, F., & Ulutas, B. (2016). Use of an eye-tracker to assess workers in ceramic tile surface defect detection. 2016 International Conference on Control, Decision and Information Technologies (CoDIT), 88–91. <u>https://doi.org/10.1109/CoDIT.2016.7593540</u>
- Paletta, L., Pszeida, M., Ganster, H., Fuhrmann, F., Weiss, W., Ladstätter, S., Dini, A., Murg, S., Mayer, H., Brijacak, I., & Reiterer, B. (2019). Gaze-based human factors measurements for the evaluation of intuitive human-robot collaboration in real-time.
 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), 1528–1531. <u>https://doi.org/10.1109/ETFA.2019.8869270</u>
- Pluchino, P., Pernice, G. F. A., Nenna, F., Mingardi, M., Bettelli, A., Bacchin, D., Spagnolli, A., Jacucci, G., Ragazzon, A., Miglioranzi, L., Pettenon, C., & Gamberini, L. (2023).
 Advanced workstations and collaborative robots: Exploiting eye-tracking and cardiac activity indices to unveil senior workers' mental workload in assembly tasks. *Frontiers in Robotics and AI*, *10*. <u>https://doi.org/10.3389/frobt.2023.1275572</u>
- Sears, M., Alruwaythi, O., & Goodrum, P. (2018). Visualizing eye tracking convex hull areas:
 a pilot study for understanding how craft workers interpret 2d construction drawings. *In C. Wang, C. Harper, Y. Lee, R. Harris, & C. Berryman (Eds.), Construction Research Congress 2018* (pp. 747–757). *American Society of Civil Engineers*.

https://doi.org/10.1061/9780784481264.073

- Sears, M., Alruwaythi, O., & Goodrum, P. M. (2022). How pipefitters obtain visual information from construction assembly drawings. *Journal of Information Technology in Construction (ITcon)*, 27, 290–311. <u>https://doi.org/10.36680/j.itcon.2022.015</u>
- Seeliger, A., Merz, G., Holz, C., & Feuerriegel, S. (2021). Exploring the effect of visual cues on eye gaze during AR-guided picking and assembly tasks. *2021 IEEE International*

Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), 159–164. https://doi.org/10.1109/ISMAR-Adjunct54149.2021.00041

- Sonntag, D., & Bodensiek, O. (2022). How mixed reality shifts visual attention and success in experimental problem solving. *Physical Review Physics Education Research*, 18(2), 023101. <u>https://doi.org/10.1103/PhysRevPhysEducRes.18.023101</u>
- Ulutas, B. H., Özkan, N. F., & Michalski, R. (2020). Application of hidden markov models to eye tracking data analysis of visual quality inspection operations. *Central European Journal of Operations Research*, 28, 761–777. <u>https://doi.org/10.1007/s10100-019-00628-x</u>
- Van Acker, B. B., Bombeke, K., Durnez, W., Parmentier, D. D., Mateus, J. C., Biondi, A., Saldien, J., & Vlerick, P. (2020). Mobile pupillometry in manual assembly: A pilot study exploring the wearability and external validity of a renowned mental workload lab measure. *International Journal of Industrial Ergonomics*, 75, 102891. https://doi.org/10.1016/j.ergon.2019.102891
- Zanardi, D., Nenna, F., Orlando, E. M., Nannetti, M., Mingardi, M., Buodo, G., & Gamberini,
 L. (2024). Pupil responses as indicators of learning and adaptation in human-robot
 collaboration scenarios. *Proceedings of the 17th International Conference on PErvasive Technologies Related to Assistive Environments*, 337–342.
 https://doi.org/10.1145/3652037.3663909